If it's not what You are looking for type in the equation solver your own equation and let us solve it.
436=t^2-55t
We move all terms to the left:
436-(t^2-55t)=0
We get rid of parentheses
-t^2+55t+436=0
We add all the numbers together, and all the variables
-1t^2+55t+436=0
a = -1; b = 55; c = +436;
Δ = b2-4ac
Δ = 552-4·(-1)·436
Δ = 4769
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(55)-\sqrt{4769}}{2*-1}=\frac{-55-\sqrt{4769}}{-2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(55)+\sqrt{4769}}{2*-1}=\frac{-55+\sqrt{4769}}{-2} $
| -6.8=1.7(b-9) | | 13.12=2g+3.82 | | 7=13-9/8x | | 2.72(y+3)=16.32 | | |8x-20|=|2x+13| | | (x*x)-(5x)=0 | | 3x+1.5=8.1 | | 83+(9x-10)=127 | | X+9/6=1/3+x-8/2 | | 31=-7w+4(w+4) | | 9(y-93)=27 | | 35.8x+5.9=220.7 | | (x*x)-(9*x)=0 | | 8t=64/19 | | 10+8q=15+9q | | 4x=-3x+11 | | -2(f-93)=22 | | x/13=-14+9 | | 32.5x+3.3+5.9=220.7 | | 5=30-15/14x | | 27–t=4t | | d/2+11=7 | | (4x-2)=(3x+8) | | 2x2+7x-624=0 | | 3-2x+4=6x+2 | | -2s=-24 | | -8x-23=-3(4x+2)-1 | | -5p+18=-6+-7p | | 9(2-1)+3(5+2j)=2(7-2j)-4(j-1) | | 4(x+2)=7(x+1) | | 3-2x+4=2(3x+1) | | 8+5(x+8)=2(3x+5)+33 |